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DETERMINATION OF THE NORMAL FORMS OF THE HAMILTONIAN MATRICES* 

T.N. TITOVA 

A method of finding the generating function of a canonical transformation reducing 
a quadratic Hamltonian and the corresponding Hamiltonian matrix to some normal form, 
is obtained. The problem of reducing a fourth order Hamiltonian matrix to its 
normal form is solved as an example. 

Let us consider a canonical system of differential equations with quadratic Hamiltonian 

dxldt = aHlay, dyldt = - aHlax, H (x, y) = ‘J,y’Cy + x’By + ‘lax’Ax (1) 

Here x and y are n-dimensional column vectors of the canonical conjugate variables, A,B and 
C are real, n -th order square matrices, A and care symmetric matrices and a prime denotes 
transposition. The system (1) can also be written in the form 

(2) 

where Vis a Hamiltonian matrix. 
The method of normalizing an arbitrary Hamiltonian matrix /l/ in order to find a normal- 

izing canonical transformation is not very practical. Other methods were therefore developed 
in /2-55/ where the authors imposed various constraints on the Hamiltonian matrix (in part- 
icular, the nondegeneracy of the Hamiltonian matrix was assumed in all cases). Below we give 
a method of obtaining a generating function of a canonical variable transformation whichtrans- 
forms the Hamiltonian matrix to some standard form. The matrix in this case may have mult- 
iple and zero eigenvalues. 

Let a and D be n-dimensional column vectors of the new canonical variables. We carry 

is a 

out the canonical transformation with help of the generating function 

S (x, p) = ‘/zp’Kp + p’Lx + I&x’Mx 

Here K,L and Mare n-th order square matrices, K and Mare symmetric matrices and L 
nondegenerate matrix. In addition, the equations 

aslap = 9, as/ax = y 
yield the following formula expressing the old variables in terms of the new variables 

L-1 - L-‘K q 

Ill II ML-’ L’- ML-‘K p 

(3) 

Carrying out the necessary calculations, we obtain the new Hamiltonian and use the obvious 
identity 

2q’BMq = q’ (BM + MB’)q 

to reduce it to the following form: 

H (q, P) = ‘IZP’COP + q’B,p + ‘Izq’Aoq 
A, = A,’ = (L’)-’ (MCM + MB’ + BM + A)L-1 
B, = (L’)-’ (MC + B) L’ - A,K 
C, = C,’ = - KA,K - KB, - B,‘K + LCL’ 

Thus, if we find it necessary to reduce the canonical system with help of a canonical 
transformation of the form (4) to a system with the Hamiltonian matrix 

vo= II &I’ Gl 
-A0 -& II 

(4) 

(5) 
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then the unknown matrices K,L and Mof the generating function must be sought from the fol- 
lowing system of matrix equations: 

MCM i- MB’ + BM + A = L’A,L (6) 
L (CM + B’)L-I = KA, + B,’ 
KA,K + KB, + B,‘K + C, = LCL’ 

The matrices A,A,, C, C, in this system are symmetric, the unknown matrices n/r and Kare sought 
in the symmetric form and the matrix Lin the nondegenerate form. Using the system (6) we 
can reduce a Hamiltonian matrix to its normal form , pass from one normal form to another, and 
simplify the initial Hamiltonian matrix. 

Let us assume it necessary to reduce a Hamiltonian matrix to the following normal form: 

a1 e1 0 . . 0 
. . . 

I = diag {E,, . . ., %,-,I, ei= 
0, 1; i=l,...,n-1 (7) 

En-1 ’ 0,*1; i=n,...,zn-i 
0 . . h, 

where hi are the eigenvalues of the Hamiltonian matrix V. The corresponding Hamiltonianhas 
the form 

* n--l 

H ((7~ PI = '/aP'lP + P'u!l = $?I (‘izh+i-lP? + &!7*P*) + izI eiPrQi+i 

Then the sysyem (6) assumes the form 

MC44 + MB’ + BM + A = 0 (8) 

L (CM + B’) L-1 = U, KU’ + UK = LCL’ - I 

and we find the unknown matrices for this system one after the other. The first equation, 

which is a matrix Riccati equation /6,7/, yields the symmetric matrix M, the second equation 

yields L which transforms the matrix CM f B’ to the normal Jordan form, and the third equa- 

tion yields the symmetric matrix K. 

Assertion 1. The canonical transformation defined by a generating function of the 

form (3) where the matrix L is nondegenerate, reduces the Hamiltonian matrix V of the 

system (2) to the normal form (7) if and only if the matrices K, L and Mof the generating 

function are solutions of the system of matric equations (8). 

Assertion 2. The system (8) of matrix equations has a solution if and only if a sym- 

plectic matrix Tof order 2s exists such, that T-‘VT = @, and the elements of the matrix T 
situated at the intersections of the first n columns and n rows form a nondegenerate matrix. 

Proof. The necessity follows from the fact that the transformation matrix (4) satisf- 

ies the conditions of the assertion, and we shall prove the sufficiency. Let the matrix T 

have the form 

T= 
(9) 

Here F,G,H and Ware n-th order square matrices, and detF#O. Then it can be shown that 

the following matrices are solutions of the system (8): 

,,+' = Gj?-A, L = F-1, K = - F-IN 

Assertion 3. Let a solution of the first equation of (a), i.e. of the matrix Riccati 

equation, exist. Then a matrix Uof normal Jordan form and a some symmetric matrix I (not 

necessarily diagonal) for which the system (8) has a solution, both exist. 

Proof. Knowing the solution of the first equation of (8), we can indeed find the mat- 

rices U and I in the course of solving the remaining equations. The matrix U represents 

the normal Jordan form of the matrix CM+B', and the matrix I ensures the solvability of 

the third equation of the system. For example, when I= LCL’, then the third equation has 

the solution K = 0. 



Normal forms of the Hamiltonian matrices 775 

Thus we see that the solution of (8) depends mainly on the solution of the matrix Riccati 
equation. Various methods of finding a symmetric solution of this nonlinear equation exist 

/6-88/r including the numerical. We shall consider one of these methods. Let T be an arbit- 
rary matrix of the form (91, reducing the Hamiltonian matrix to the normal form (7) in such a 
manner that T-‘VT = 0,. and detFP 0. Then the first two equations of (8) will have the fol- 
lowing solutions /6,7;: 

M=GF-',L =F-* 

The symmetric character of the matrix GP1 is shown in /6,7/ under the condition that the 
eigenvalues of the matrix U, which appears in the normal type matrix @, satisfy the con- 
dition A* + h,# 0, i, j = 1, . . .( n. The condition will always hold, provided that the 
Hamiltonian matrix V is nondegenerate. Let det Vf 0, kij be the elements of the matrix K, 

and cij theelementsofthematrix LCL' (we note that I= 0 since det Vf 0). Thentheelements 
of the symmetric matrix K are given by the triangular system of '/,n.(n + 1) linear equations 

(1, f h,) k,, + &+,,I + ~~~t,~+~ = cij (10) 

1 < i < j < n, kij = kji, E, = k,+l,j = 0 

The system is compatible , since the principal determinant of the system 

II @+aj)#O 

KiCjQn 

Assertion 4. Let the Hamiltonian matrix V have at most a single pair of zero eigen- 
values, Tbe an arbitrary matrix of the form (9) reducing the matrix V to the normal form (7), 
and let the following conditions hold: 

1) the matrices U and Iappearing in the normal type matrix @ have the form 

hl el o...o 

U= 
0 h, 82. . . 0 

0:: h, 

, I=diag(O,. ..,O,c) 

h~thj#0~2~i+~~2n-l;e,=0,1;i=1,..., n-l;e=O,i 

(theabovecondition can always be realized under the conditions imposed on the eigenvalues of 
v /9/j; 

2) the transformation matrix T has a nondegenerate submatrix F. Then the matrices of 
the generating function of some normalizing canonical transformation have the form 

M = GF-‘, 

where f is the element of the matrix PC(~')' appearing in the lower right-hand side corner. 
The elements of the symmetric matrix K are found from the compatible triangular system of 
linear equations (10) where cif are the elements of the matrix LCL’-Z. 

Proof. It whas shown (*) that the matrix M=GF-1 is, under the conditions of the as- 
sertion, a symmetric solution of the matrix Riccati equation. It is clear that the matrix L= 
lF-’ satisfies the second equation of (8). We shall show that the equations (10) are compat- 
ible. Indeed, the last equation of this system has the form 

2l.,,k,,, = c,,,, c, = Pf - e 
(E = o if the Hamiltonian matrix is nondegenerate). Out of the two values which e can assume, 
we can always choose the value for which the equation has a solution (the matrices F and G 
are independent of 8). The remaining equations of the system (10) form a system of linear 
equations the principal determinant of which is not zero. Having found the generating func- 
tion of the canonical transformation, we obtain the transformation itself in the form 

*) Titova T.N. On the normalizing of a degenerate Hamiltonian matrix. Moscow, Dep. v VINITI, 
No.434, 1978. 
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Example 1. We illustrate theproposedmethod by obtaining the expressions for the gen- 
erating function of canonical transformation normalizing the nondegenerate fourth order 
Hamiltonian matrix V (*) under the condition that the submatrix c is positive definite (i.e. 
the corresponding Hamiltonian is a positive definite quadratic form relative to the general- 
ized impulses). Then a nondegenerate matrix R exists such, that R’CR=E /lo/. To simplify 
the formulas, we shall first perform the following canonical transformation: 

Then the new Hamiltonian will become 

H (E, 11) = li, rl'l + E’R-~BR~ + w~-u (R-J)‘S = vnqq + g.‘Botl + %%‘A~S 

In what follows, we shall omit the indices and consider the following Hamiltonian matrix: 

bll bz1 10 

II 

B’ E 
V= bn 0 1 

-A -B = -aI 

” a 

bm 
- a12 - bu - bla 

- a12 -%a ---a, -bbna, 

Let p = bl,- b,,, D=BB’-A,v, and vt be the eigenvalues of the matrix D, -&a,, j& the eigen- 
values of V, J&ii a positive or purely imaginary number with a positive coefficient, and F 

an orthogonal matrix reducing the symmetric matrix D to the diagonal form, i.e. FDF’ = diag(v,, 

VJ (the rows of the matrix F are orthogonal eigenvectors of the matrix D). 

We shall reduce the Hamiltonian matrix V to the normal form 

Case lo. Let P = *(r/Y, + Vi% v1 + v%. Then 

k8a = (a2 7 4ha I/<p + Q/(2& kla = k2, = (1 T 2h I/<p - k&/(zh), 
41 = (I- %,)/(21) 

Case 2'. Let p = &(l/<- 1/G)); vl#vz. All formulas given in lo hold after replacing v/y, 

by --I/<. 

Case 3'. Let ~~#(()/<f~~)s;~#O. Then the eigenvalues of the matrix V will be differ- 
ent: &a,, &,; u = diag {a,, W . 

Case 4'. Let P = 0, ? # vz. Then U = diag (v/yl, J$}, M = F’UF - E. L = F, K = l/,U-‘. 

*) Titova T.N. On the normalization of a linear Hamiltonian system with help of canonicaltran- 
sformations. Moscow, Dep. v. VINITI, No. 1049, 1976. 
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Case 5'. Let ~=O,vl=vB=v. Then u=v/;E,M=v%S-S,L=E, R=(1/(21/G)j)E. 

Thus the method fails when v1 = v, = pq4. 

Example 2. Consider a Hamiltonian matrix of the type (7) where 

U = UI, 4 0,-k, I = Ok i In-k, Uk = diag (hl, . . ., hk), In-k = diag {Ei, . ., En-k). Ei = 0, I@ 

and ok (is a zero square matrix of order k($ denotes a straight sum of the matrices). Any 
Hamiltonian matrix thenonzeroeigenvalues of which do not form Jordanian cells oforderhigher 
than the first, can be reduced to such normal form. Let all h,(i= 1, . . . . k) be purely imagin- 

ary- Then the Hamiltonian matrix is complex and we have the problem of passing to the follow- 
ing real form: 

0 c 

I I -A 0’ 
C=-itrk$I,&, A=-iUk_FOn_k 

The system of matrix equations (6) assumes in this case the following form: 

MIM + MU + UM = L’AL 

L(IM+U)L-l=KA, KAK+C=LIL’ 

and this yields the matrices of the generating function 

M = - ll,i& j-&k, L = ff, K = iEk + On_k 

The canonical transformation is obtained in the form 

X1= 91 - $1, 58 = qa - i& . . ., 5); = qk - ipk, zk+l= qk+l. . . . 
51 = h vl = - ‘lPhl $ ‘l&%9 . . ., Yk = - ‘/giQk + %PkT Yk+I = Pk+l, . . ., Yn = Pn 

and putting 1,= io, we obtain, as the result of the transformation, the new Hamiltonian in 
the form 

k 

~“j@je+qj2)++ $J Pj’ 

j=l j=k+l 
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